AI-based methods to investigate the roles of glial cells in synapse formation in the retina

Prof. Robert Hindges (primary)
Centre for Developmental Neurobiology
Kings College London
Ryan MacDonald (secondary)
Institute of Ophthalmology
UCL

Abstract

Synaptic interaction between specific retinal cells are crucial to enable the shaping of different visual responses, for example to detect orientations in the visual world. However, it is not clear what role the glial cells in the retina play in the establishment and/or organization of synapses. Although it is possible to investigate this using electron microscopy, the current methods to analyse 3D-EM data in the retina are lacking speed and precision. This project will apply and optimize machine-learning approaches to analyse EM stacks from zebrafish retina and thus enable the ultrastructural investigation of synapses between distinct cells in the eye.


References

– Antinucci, P., Suleyman, O., Monfries, C. & Hindges, R. (2016). Neural Mechanisms Generating Orientation Selectivity in the Retina. Current Biology 26: 1802-1815.
– Bergeles, C., Dubis, A., Davidson, B., Kalitzeos, A., Kasilian, M., Carroll, J., . . . Ourselin, S. (2017). Unsupervised identification of cone photoreceptors in non-confocal adaptive optics scanning light ophthalmoscope images. Biomedical Optics Express. doi:10.1364/BOE.8.003081
– Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W (2013) Connectomic reconstruction of the inner plexiform layer in the mouse retina Nature 500: 168-174
– MacDonald RB, Randlett OR, Oswald J, Yoshimatsu T, Franze K, and Harris WA. 2015. Müller glial cells provide essential tensile strength to the developing retina. Journal of Cell Biology 210: 1075-1083.
– MacDonald RB, Charlton-Perkins M and Harris WA. 2017. Mechanisms of Müller glial cell morphogenesis. Curr. Opin. Neurobiol. 47: 31-37.
– Missaire, M. & Hindges, R. (2015). The role of cell adhesion molecules in visual circuit formation: From neurite outgrowth to maps and synaptic specificity. Dev Neurobiol. 75: 569-583.
– Toms, M., Tracey-White, D., Muhundhakumar, D., Sprogyte, L., Dubis, A. M., & Moosajee, M. (2017). Spectral Domain Optical Coherence Tomography: An In Vivo Imaging Protocol for Assessing Retinal Morphology in Adult Zebrafish. ZEBRAFISH, 14(2), 118-125. doi:10.1089/zeb.2016.1376


BBSRC Area
Genes, development and STEM* approaches to biology
Area of Biology
DevelopmentNeurobiology
Techniques & Approaches
BiochemistryBiophysicsGeneticsImage ProcessingMathematics / StatisticsMicroscopy / ElectrophysiologyMolecular Biology