CompuBee: A computational model for integrative epigenetics analysis in the honeybee

Dr Paul J. Hurd (primary)
School of Biological & Chemical Sciences
Queen Mary University of London
Dr Robert A. Lowe (secondary)
The Blizard Institute, Barts and The London School of Medicine and Dentistry
Queen Mary University of London

Abstract

With a drastic reduction in costs of high-throughput sequencing, the opportunity to interrogate multiple epigenomic datasets has never been more feasible. The honeybee provides an excellent model in which to integrate and interrogate multiple epigenomic datasets because its genome encodes three distinct organisms/castes; determined by differential nutrition during development. In addition, the honeybee genome is considerably smaller than human thus providing manageable datasets to build and test novel computational tools. These tools will be used to investigate the role of dietary components in establishing caste-specific epigenomic patterns in the honeybee and will also be of utility across multiple different organisms.


References

Wojciechowski, M., Lowe, R., Maleszka, J., Conn, D., Maleszka, R. & Hurd, P. J. (2018) Phenotypically distinct female castes in honey bees are defined by alternative chromatin states during larval development. Genome Res. 28, 1532-1542.

Lowe R., Holland M.L.,Caton P.W., Gemma C., Carbajosa G., Danson A.F., Carpenter A.A., Loche E., Ozanne S.E. and Rakyan V.K. (2016) Intergenerational effects of gene-environment induced epigenetic dynamics at rDNA in the mouse. Science 353, 495-498.

Dickman, M. J., Kucharski, R., Maleszka, R. & Hurd, P. J. (2013) Extensive histone post-translational modification in the honeybee. Insect Biochem. Mol. Biol. 43, 125-137.

Lowe, R., Overhoff, M. G., Ramagopalan, S. V., Garbe, J. C., Koh, J., Stampfer, M. R., Beach, D. H., Rakyan, V. K. & Bishop, C. L. (2015) The senescent methylome and its relationship with cancer, ageing and germline genetic variation in humans. Genome Biol. 16, 194.


BBSRC Area
Genes, development and STEM* approaches to biology
Area of Biology
Cell BiologyDevelopment
Techniques & Approaches
BiochemistryBioinformaticsMathematics / StatisticsMolecular Biology