Enabling next-generation single-particle electron microscopy by delivering on ideally oriented antibody-fragment derivatized grids for optimal protein capture.

Vijay (primary)
Chemistry
UCL
Carolyn (secondary)
Structural Biology
Birkbeck

Abstract

Whilst light-microscopes have uncovered many secrets of biology, the long wavelength of visible light means that light microscopes have limited resolution and are thus not useful when looking at very small objects, such as proteins. Single particle cryo-electron microscopy (EM), recognized in the Chemistry Nobel Prize, 2017, overcomes this limitation by using electrons and their much shorter wavelength for imaging. However, sample preparation remains a time consuming, unpredictable bottleneck in this area of research. This project aims to deliver next-generation techniques for cryo-EM by derivatising EM grids with ideally oriented antibody fragments (using state-of-the-art chemical biology) for optimal protein capture.


References

1. K. R. Vinothkumar and R. Henderson, Q. Rev. Biophys., 2016, 49, e13.
2. S. P. Maurer, F. J. Fourniol, G. Bohner, C. A. Moores and T. Surrey, Cell, 2012, 149, 371–382.
3. J. Atherton, K. Jiang, M. M. Stangier, Y. Luo, S. Hua, K. Houben, J. J. E. van Hooff, A.-P. Joseph, G. Scarabelli, B. J. Grant, A. J. Roberts, M. Topf, M. O. Steinmetz, M. Baldus, C. A. Moores and A. Akhmanova, Nat. Struct. Mol. Biol., 2017, 24, 931–943.
4. C. J. Benjamin, K. J. Wright, S. C. Bolton, S.-H. Hyun, K. Krynski, M. Grover, G. Yu, F. Guo, T. L. Kinzer-Ursem, W. Jiang and D. H. Thompson, Sci. Rep., 2016, 6, 32500.
5. M. Greene, D. A. Richards, J. Nogueira, K. Campbell, P. Smyth, M. Fernandez, C. J. Scott, V. Chudasama, Chem. Sci., 2018, 9, 79–87.


BBSRC Area
Molecules, cells and industrial biotechnology
Area of Biology
Chemical BiologyStructural Biology
Techniques & Approaches
BiochemistryBiophysicsChemistryImage ProcessingMicroscopy / Electrophysiology