Engineered microfabricated placental organoids to study placental development and application as disease model

Julien Gautrot (primary)
Institute of Bioengineering
Queen Mary, University of London
Eileen Gentleman (secondary)
Centre for Craniofacial and Regenerative Biology
Kings College London


Despite its importance to development and human health, placental biology remains poorly understood. Considering the significant variation in placental architecture, biology and development, across species, animal models poorly capture the physiology of human placenta, and processes occurring in conditions such as pre-eclampsia and other pregnancy disorders. Organoids have emerged as exceptional tissue models to study cell and tissue biology in a human context in vitro [1, 2]. However, placental organoids do not currently recapitulate the normal architecture and polarity of this tissue [3]. This project aims to microfabricate placental organoids using state of the art microfluidic platforms and engineered artificial extra-cellular matrix.


1. H. Clevers, Cell, 2016, 165, 1586-1597.
2. T. Sato, J. H. van Hes, H. J. Snippert, D. E. Stange, R. G. Vries, M. van den Born, N. Barker, N. F. Shroyer, M. van de Wetering and H. Clevers, Nature, 2011, 469, 415-419.
3. M. A. Sheridan, R. C. Fernando, L. Gardner, M. S. Hollinshead, G. J. Burton, A. Moffett and M. Y. Turco, Nat. Protoc., 2020, 15, 3441-3463.
4. B. Colak, L. Wu, E. J. Cozens and J. Gautrot, ACS Appl. Bio Mater., 2020,
5. E. J. Cozens, D. Kong, N. Roohpour and J. E. Gautrot, Soft Matter, 2020, 16, 505-522.
6. L. Wu, S. Di Cio, H. S. Azevedo and J. E. Gautrot, Biomacromolecules, 2020, 21, 4663–4672.
7. D. Kong, L. Peng, S. di Cio, P. Novak and J. E. Gautrot, ACS Nano, 2018, 12, 9206-9213.
8. S. A. Ferreira, M. S. Motwani, P. A. Faull, A. J. Seymour, T. T. L. Yu, M. Enayati, D. K. Taheem, C. Salzlechner, T. Haghighi, E. M. Kania, O. P. Oommen, T. Ahmed, S. Loaiza, K. Parzych, F. Dazzi, O. P. Varghese, F. Festy, A. E. Grigoriadis, H. W. Auner, A. P. Snijders, L. Bozec and E. Gentleman, Nat. Commun., 2018, 9, 4049.
9. G. M. Jowett, M. D. A. Norman, T. T. L. Yu1, P. R. Arévalo, D. Hoogland, S. T. Lust, E. Read, E. Hamrud, N. J. Walters, U. Niazi, M. W. H. Chung, D. Marciano, O. S. Omer, T. Zabinski, D. Danovi, G. M. Lord, J. Hilborn, N. D. Evans, C. A. Dreiss, L. Bozec, O. P. Oommen, C. D. Lorenz, R. M. P. da Silva, J. F. Neves and E. Gentleman, Nat. Mater., 2020, 20, 250-259.
10. N. M. E. Fogarty, A. McCarthy, K. E. Snijders, B. E. Powell, N. Kubikova, P. Blakeley, R. Lea, K. Elder, S. E. Wamaitha, D. Kim, V. Maciulyte, J. Kleinjung, J. S. Kim, D. Wells, L. Vallier, A. Bertero, J. M. A. Turner and K. K. Niakan, Nature, 2017, 550, 67-73.
11. M. N. Shahbazi, A. Jedrusik, S. Vuoristo, G. Recher, A. Hupalowska, V. Bolton, N. M. E. Fogarty, A. Campbell, L. G. Devito, D. Ilic, Y. Khalaf, K. K. Niakan, S. Fishel and M. Zernicka-Goetz, Nat. Cell Biology, 2016, 18, 700-708.
12. Y. You, K. Kobayashi, B. Colak, P. Luo, E. Cozen, L. Fields, K. Suzuki and J. Gautrot, Biomaterials, 2020, DOI: 10.1016/j.biomaterials.2020.120356.

Genes, development and STEM* approaches to biology
Area of Biology
Cell BiologyDevelopment
Techniques & Approaches
BiophysicsEngineeringMicroscopy / ElectrophysiologyMolecular Biology