Host-microbiome interactions: Effects of microbiome modulation of vitamin D signalling on function and ageing of the nervous system

Marina Ezcurra (primary)
School of Biological and Chemical Sciences
Queen Mary University of London
David Moyes (secondary)
Mucosal & Salivary Biology
King's College London

Abstract

We will use multiple models and approaches to investigate host-microbiome interactions affecting the nervous system and test the hypothesis that the microbiota impacts on ageing of the nervous system by modulating vitamin D levels. Bacterial strains from the human microbiota will be screened for vitamin D-related effects on the ageing nervous system using C. elegans. Hits will be further tested for effects on cognitive function and neurodegeneration. Transcriptomics and bioinformatics combined with behavioural genetics and live imaging will be used to determine host-microbiome interactions. The findings will be confirmed using zebrafish to identify host-microbiome interactions with translational potential.


References

1. Sommer, F. & Bäckhed, F. The gut microbiota–masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–38 (2013).
2. Biagi, E., Candela, M., Fairweather-Tait, S., Franceschi, C. & Brigidi, P. Ageing of the human metaorganism: The microbial counterpart. Age (Omaha). 34, 247–267 (2012).
3. O’Toole, P. W. & Jeffery, I. B. Gut microbiota and aging. Science (80-. ). 350, 1214–1216 (2015).
4. Claesson, M. J. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl. Acad. Sci. 108, 4586–4591 (2011).
5. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature (2016). doi:10.1038/nature11319
6. Biagi, E. et al. Gut Microbiota and Extreme Longevity. Curr. Biol. 26, 1480–1485 (2016).
7. Fritz, J. V, Desai, M. S., Shah, P., Schneider, J. G. & Wilmes, P. From meta-omics to causality: experimental models for human microbiome research. Microbiome 1, 14 (2013).
8. Sharon, G., Sampson, T. R., Geschwind, D. H. & Mazmanian, S. K. The Central Nervous System and the Gut Microbiome. Cell 167, 915–932 (2016).
9. Vuong, H. E., Yano, J. M., Fung, T. C. & Hsiao, E. Y. The Microbiome and Host Behavior. Annu. Rev. Neurosci. 40, 21–49 (2017).
10. Meehan, M. & Penckofer, S. The Role of Vitamin D in the Aging Adult. J. aging Gerontol. 2, 60–71 (2014).
11. Bora, S. A., Kennett, M. J., Smith, P. B., Patterson, A. D. & Cantorna, M. T. Regulation of vitamin D metabolism following disruption of the microbiota using broad spectrum antibiotics. J. Nutr. Biochem. 56, 65–73 (2018).
12. C., W. J., H., P. T. & J., A. P. Reversing Bacteria‐induced Vitamin D Receptor Dysfunction Is Key to Autoimmune Disease. Ann. N. Y. Acad. Sci. 1173, 757–765 (2009).
13. Shapira, M. Host–microbiota interactions in Caenorhabditis elegans and their significance. Curr. Opin. Microbiol. 38, 142–147 (2017).
14. Ezcurra, M. Dissecting cause and effect in host- microbiome interactions using the combined worm-bug model system. Biogerontology (2018). doi:10.1007/s10522-018-9752-x
15. Moyes, D. L. et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 532, 64 (2016).
16. Witherden, E. A., Moyes, D. L., Bruce, K. D., Ehrlich, S. D. & Shoaie, S. Using systems biology approaches to elucidate cause and effect in host–microbiome interactions. Curr. Opin. Syst. Biol. 3, 141–146 (2017).
17. Ezcurra, M., Walker, D. S., Beets, I., Swoboda, P. & Schafer, W. R. Neuropeptidergic Signaling and Active Feeding State Inhibit Nociception in Caenorhabditis elegans. J. Neurosci. 36, 3157–3169 (2016).
18. Parker, M. O., Brock, A. J., Walton, R. T. & Brennan, C. H. The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function. Front. Neural Circuits 7, 63 (2013).
19. Ezcurra, M. et al. Autophagy-dependent Gut-to-Yolk Biomass Conversion Generates Visceral Polymorbidity in Ageing C. elegans. bioRxiv (2017).
20. Balion, C. et al. Vitamin D, cognition, and dementia; A systematic review and meta-analysis. Neurology 79, 1397–1405 (2012).
21. Mark, K. A. et al. Vitamin D Promotes Protein Homeostasis and Longevity via the Stress Response Pathway Genes skn-1, ire-1, and xbp-1. Cell Rep. 17, 1227–1237 (2016).
22. Kauffman, A. L., Ashraf, J. M., orces-Zimmerman, M. R., Landis, J. N. & Murphy, C. T. Insulin signaling and dietary restriction differentially influence the decline of learning and memory with age. PLoS Biol. 8, (2010).
23. Alexander, A. G., Marfil, V. & Li, C. Use of C. elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front. Genet. 5, 1–21 (2014).
24. Gelino, S. et al. Intestinal Autophagy Improves Healthspan and Longevity in C. elegans during Dietary Restriction. PLoS Genet. 12, 1–24 (2016).


BBSRC Area
Genes, development and STEM* approaches to biology
Area of Biology
AgeingNeurobiology
Techniques & Approaches
BiochemistryBioinformaticsGeneticsMicroscopy / ElectrophysiologyMolecular Biology