Novel Probes in Biology : Bifunctional rhodamines for in-situ protein orientation

Dr Andre Cobb (primary)
Chemistry
King's College London
Dr Yin-Biao Sun (secondary)
Randall Centre for Cell and Molecular Biophysics
King's College London

Abstract

Elucidating the orientation and motion of muscle proteins at the molecular level is critical in providing an explanation of the functional consequences of mutations associated with heart disease.

Our current underlying biophysical approach is based on fluorescence polarisation measurements in muscle fibres of mutant proteins containing a pair of cysteines using bifunctional rhodamines (BFR). However, our existing BFRs have limitations, especially with poorly soluble proteins. They also form diastereoisomers on binding, each with two possible conformations. Hence there is need for the design and synthesis of a fast-reacting, water-soluble BFR that does not generate either conformational or stereoisomers.


References

Corrie, J. E. T.; Brandmeier, B. D.; Ferguson, R. E.; Trentham, D. R.; Kendrick-Jones, J.; Hopkins, S. C.; van der Heide, U. A.; Goldman, Y. E.; Sabido-David, C.; Dale, R. E.; Criddle, S.; Irving, M. Nature 1999, 400, 425-430.
Corrie, J. E. T.; Craik, J. S.; Munasinghe, V. R. N. Bioconj. Chem. 1998, 9, 160-167.
Wu, L.; Burgess, K. J. Org. Chem. 2008, 73, 8711-8718.
Cardoso, I. C. S.; Amorim, A. L.; Queirós, C.; Lopes, S. C.; Gameiro, P.; de Castro, B.; Rangel, M.; Silva, A. M. G. Eur. J. Org. Chem. 2012, 5810-5817.
De Simone, A.; Corrie, J. E. T.; Dale, R. T.; Irving, M.; Fraternali, F. J. Am. Chem. Soc. 2008, 130, 17120-17128.


BBSRC Area
Molecules, cells and industrial biotechnology
Area of Biology
Chemical BiologyStructural Biology
Techniques & Approaches
BiochemistryBiophysicsChemistry