Temporal factors underlying thermal perception

Patrick Haggard (primary)
Institute of Cognitive Neuroscience
UCL
Andrew Macaskill (secondary)
Neuroscience Physiology Pharmacology
University College London

Abstract

Thermal sensation is crucial for homeostasis, guidance of behaviour, and emotion regulation. Thermal afferent pathways are also closely linked with nociceptive pathways, in both the spinal cord and the cortex. Thus, thermal sensations influence the body’s system for detecting and defending itself against environmental threats. Despite the important roles of thermoception in all mammalian life, systematic studies of human thermal sensory systems are rare. This project will apply advanced methods for studying temperature perception to characterise the temporal factors underlying thermoception in humans, over and above established differences in the conduction velocities of the different afferent fibre classes. We will use similar methods to dissect the influences of temperature sensing on pain, by employing a sensory illusion in which mild warm and cool temperatures are combined to produce a sensation of burning pain (i.e., the “Thermal Grill Illusion”). Companion studies in mice will record from spinal and cortical neurons during exposure to thermal stimuli to look for neurophysiological signals associated with the temporal resolution thresholds obtained from our human participants.


References

References

1 Cain, W. S. Spatial discrimination of cutaneous warmth. Am J Psychol 86, 169-181 (1973).
2 Green, B. G. Localization of Thermal Sensation – Illusion and Synthetic Heat. Perception & Psychophysics 22, 331-337, doi:Doi 10.3758/Bf03199698 (1977).
3 Nathan, P. W. & Rice, R. C. The localization of warm stimuli. Neurology 16, 533-540 (1966).
4 Simmel, M. L. & Shaprio, A. The localization of non-tactile thermal sensations. Psychophysiology 5, 415-425 (1969).
5 Taus, R. H., Stevens, J. C. & Marks, L. E. Spatial Localization of Warmth. Perception & Psychophysics 17, 194-196, doi:Doi 10.3758/Bf03203885 (1975).
6 Yang, G. H., Kwon, D. S. & Jones, L. A. Spatial acuity and summation on the hand: the role of thermal cues in material discrimination. Atten Percept Psychophys 71, 156-163, doi:10.3758/APP.71.1.156 (2009).
7 Lederman, S. J. & Klatzky, R. L. Relative availability of surface and object properties during early haptic processing. Journal of experimental psychology. Human perception and performance 23, 1680-1707 (1997).
8 Yarnitsky, D. & Ochoa, J. L. Warm and cold specific somatosensory systems. Psychophysical thresholds, reaction times and peripheral conduction velocities. Brain : a journal of neurology 114 ( Pt 4), 1819-1826 (1991).
9 Defrin, R., Benstein-Sheraizin, A., Bezalel, A., Mantzur, O. & Arendt-Nielsen, L. The spatial characteristics of the painful thermal grill illusion. Pain 138, 577-586, doi:10.1016/j.pain.2008.02.012 (2008).
10 Lindstedt, F. et al. Evidence for thalamic involvement in the thermal grill illusion: an FMRI study. PloS one 6, e27075, doi:10.1371/journal.pone.0027075 (2011).
11 Marotta, A., Ferre, E. R. & Haggard, P. Transforming the thermal grill effect by crossing the fingers. Current biology : CB 25, 1069-1073, doi:10.1016/j.cub.2015.02.055 (2015).
12 Beukema, P. et al. TrpM8-mediated somatosensation in mouse neocortex. J Comp Neurol 526, 1444-1456, doi:10.1002/cne.24418 (2018).
13 Pogorzala, L. A., Mishra, S. K. & Hoon, M. A. The cellular code for mammalian thermosensation. The Journal of neuroscience : the official journal of the Society for Neuroscience 33, 5533-5541, doi:10.1523/JNEUROSCI.5788-12.2013 (2013).
14 Jones, L. A. & Ho, H. N. Warm or Cool, Large or Small? The Challenge of Thermal Displays. IEEE Trans Haptics 1, 53-70, doi:10.1109/TOH.2008.2 (2008).


BBSRC Area
Animal disease, health and welfare
Area of Biology
NeurobiologyPhysiology
Techniques & Approaches
EngineeringMathematics / StatisticsMicroscopy / Electrophysiology